1
ОДЗ x>0,y>0
{log(2)xy=log(2)(x+y)⇒xy=x+y
{x²+y²=8⇒(x+y)²-2xy=8
(x+y)²-2(x+y)-8=0
x+y=a
a²-2a-8=0
a1+a2=2 U a1*a2=-8
a1=-2 U a2=4
1)x+y=-2⇒x=-2-y
{xy=-2
y²+2y-2=0
D=4+8=12
y1=(-2-2√3)/2=-1-√3 ∉ОДЗ
y2=-1+√3⇒x2=-2+1-√3=-1-√3∉ОДЗ
2){x+y=4⇒x=4-y
{xy=4
y²-4y+4=0
(y-2)²=0
y=2⇒x=2
Ответ (2;2)
2
ОДЗ x>0,y>0
{x-y²=1
{lg(x/y²)=1⇒x/y²=10⇒x=10y²
10y²-y²=1
9y²=1
y²=1/9
y=-1/3∉ОДЗ
x=10*1/9
x=10/9
Ответ (10/9;1/3)
2x² - 10x + 2x - 10 + 7x - 11 - x² + 5x - 3x - 15 = 0
x² + x - 36 = 0
D = 1 - 4 * 1 * (- 36) = 1 + 144 = 145
2log2(3)+log7(2)-log7(14)=2log2(3)+log7(2/14)=2log2(3)+log7(1/7)=2log2(3)-1=log2(9)-1
log7(1/7)=log7(7^-1)=-1*log7(7)=-1
3x2y4*4x3y2=12x5y6
0,5с4* (3b3c)2=4,5с6b6