ВС перпендикуляр, следовательно АВС прямоуг. треугольник, катет ВС=2 см, т.к. лежит против угла в 30º он равен половине гипотенузы. АС находим по теореме Пифагора AC^2=AB^2-BC^2 (^2 это во второй степени) АС^2=16-4 , АС=два корня из трех
Условие:
угол ABC
малая окружность(О2;R2)
большая окружность(O1;R1=23)
Решение:
По свойству секущей, угол BL2O2 равен углу ВК2О2, углу ВL1О1 и углу ВК1О1 и равен 90 градусам.
Из четырехугольников L1BK1O1 и L2BK2O2 углы L1O1K1 и L2O2K2 равны 120 градусам из следующего уравнения: 360-2*90-60=120.
Проведем бис-су ВО, которая пересечет центры окружностей О1 и О2.
По свойству катета, лежащего против угла в 30 градусов, гипотенуза прямоугольного треугольника О1В равна двум катетам или радиусам большой окружности и равна 46.
Из прямоугольного треугольника К2О2В гипотенуза О2В равна двум катетам К2О, как и в случае с треугольником К1О1В.
Точка D общая для обеих окружностей.
O1D=R1=23.
O1B=O1D+DB
DB=R1+O2B.
O1B=R1+R2+O2B
O1B=R1+R2+2R2
3R2=O1B-R1
R2=(O1B-R1)/3
Подставим значения:
R2=(46-23)/3
R2=23/3.
Найдем расстояние от точек касания окружностей до вершины угла:
По синусу угла ВО1К1 К1В =(корень из 3)/2*46=23*(корень из 3)
По синусу угла ВО2К2 К2В =(корень из 3)/2*23=11,5*(корень из 3).
1) Рассмотрим треугольник АВС
сторона АВ=3,ВС=4,угол В=90,следовательно АС=5(треугольник пифагора)
2)АВ/А1В1=3/6=1/2
АС/А1С1=5/10=1/2
угол В= углу В1,следовательно треугольники подобны и относятся как 1:2,что и т.д.
По свойству касательных, проведенных из одной точки ОК=ОР, треугольник ОКР равнобедренный с углом в 60, поэтому равносторонний, поэтому
ТО есть координаты центра
радиус 2.
Поэтому уравнение окружности
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения
получаем
Что эквивалентно
Сложив, получаем
или Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам.<span> Аналогично, треугольник CBH подобен ABC. Введя обозначения</span>
получаем
Что эквивалентно
Сложив, получаем
<span>или </span>