В1) Треугольник АВС - прямоугольный, так как сумма квадратов двух сторон (a, b) равна квадрату третьей (c).
R = c/2 = 6/2 = 3 м
Первый вариант. Поскольку данный в условии рисунок ввел меня в заблуждение,
начнем с построения по условию.
Пусть дана окружность радиуса R=ВС=15(центр В). Хорда СЕ=18,
а <ECM=90°. То есть ЕМ - диаметр. Надо построить окружность, чтобы СЕ была касательной к этой окружности.
То есть прямая СМ должна включать диаметр этой окружности. Но по условию центр О первой окружности должен лежать на прямой АВ.
То есть пересечение прямых СМ и АВ и даст нам центр первой окружности. Проведем ВК перпендикулярно СЕ. По свойству радиуса, перпендикулярного хорде, СК=СЕ/2 или СК=18:2=9.
Имеем прямоугольную трапецию КСОВ, в которой СО=ОВ (радиусы первой окружности).
Проведем высоту трапеции ОН. Пусть СО=х. Тогда НВ=КВ-СО или НВ=(12-х) и по Пифагору ОН²=ОВ²-НВ² или х²-(12-х)²=81,
отсюда 24х=225, х=9,375.
Ответ:R=9,375.
Второй вариант:
При внимательном рассмотрении оказалось, что можно решить и с приведенным в условии рисунком.
Смотрите второе приложение.
Проведем ВК перпендикулярно СЕ.
По пифагору ВК=√(ВС²-СК²) или ВК=√(225-61)=12.
Прямоугольная трапеция СКВО, в которой <C=<K=90°.
Проведем высоту ВН трапеции.
ВН=СК=9.
ОВ=ОС=х (искомый радиус).
Тогда по Пифагору из треугольника ОНВ:
(х-12)²+9²=х².
х²-24х+144+81=х².
-24х+225=0.
24х=225.
х=225/24=9,375.
Ответ: R=9,375.
4) Р<span>асстояние от точки А до ребра двугранного угла - это гипотенуза в прямоугольном треугольнике с катетами по 10 см.
L = </span>√(10² + 10²) = √200 = 10√2 = <span><span>14.14214 см.
5) Р</span></span>асстояние от точки М до другой грани равно 10*sin 60 = 10*√3/2 = <span><span>8.660254 см.</span></span>
AC-18 градусов или cм? Диагональ не может быть равна 18 градусам=\