AO = OB
CO = OD
∠AOD = ∠COB - как вертикальные
Значит, ∆AOD = ∆BOC - по I признаку.
Из равенства треугольников => BC = AD.
Немного сомневаюсь, число какое-то неудобное получилось
1)
2) Опустим высоту DE в грани DCB. Т.к. пирамида правильная ⇒ ΔDCB равнобедренный ⇒ DE - медиана ⇒ E - середина ребра CB.
Соединим AE. т.к. ΔABC - равносторонний ⇒ AE медиана и высота.
DE ⊥ CB и AE ⊥ CB ⇒ ∠AED - линейный угол двугранного угла.
3) Опустим высоту DH. т.к. пирамида правильная H делит AE в отношении 2:1 начиная от вершины ⇒ HE = 1/3 AE.
ΔDHE - прямоугольный и равнобедренный ⇒ h = DH = HE = 1/3 AE;
4)
Пусть МТ=а, РТ=б МР=с
а) б=3а
Следовательно с=4а, следовательно МТ=4.5 РТ=13,5
б) б=а-3
Следовательно с= а+а-3, 18=2а-3, а=(18-3)/2=7.5
МТ=7.5 РТ=10.5
Ответ:
Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =