Докажем, сначала, что куб числа - монотонная функция.
Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции.
Пойдем методом от противного
пусть в точках х и х+с функция принимает одно и то же значение, тогда:
x^3=(x+c)^3
x^3=x^3+3x^2c+3xc^2+c^3
3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0
3x^2+3cx+c^2=0
D=9c^2-4*3c^2=-3c^2<0
Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна.
Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей.
Пусть:
(x+1)^3>x^3
x^3+3x^2+3x+1>x^3
3x^2+3x+1>0
D=9-12=-3<0
Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0
Отсюда следует, что:
(x+1)^3>x^3
f(x+1)>f(x)
Значит функция является монотонно возрастающей.
(6а-в)²-(9а-в)(4а+2в)=36а²-12ав+в²-(36а²+18ав-4ав-2в²)=36а²-12ав+в²-36а²-18ав+4ав+2в²=-26ав+3в²=3в<span>²-26ав</span>
Просто нужно разделить и всё.
1) 7:8= 0,875
2) 66:77= 0,857
3) 555:666= 0, 833
4) 4444:5555= 0,8 дописываем нули, чтобы было три цифры после запятой- 0,800
5) 33333:44444= 0,75 дописываем ноль,чтобы было три цифры после запятой- 0,750
Теперь выбираем число, чьи цифры после запятой самые большие, то есть 0,875.
Ответ: самая большая дробь 7/8.
Пусть х -скорость первого велосипедиста, (х-3) - скорость второго. Тогда время в пути первого велосипедиста 18/х, а второго - (18/(х-3)). 12 минут - это 12/60 или 1/5 часа. Составим уравнение
(18/(х-3)) -(18/х)=(1/5)
Умножим обе части уравнения на 5
(90/(х-3))-(90/х)=1
Приведем к общему знаменателю
(90х-90(х-3))/(х(х-3))=1
(90х-90х+270)/(x^2-3x)=1
270/(x^2-3x)=1
x^2-3x=270
x^2-3x-270=0
D=9+1080=1089
x1=(3+33)/2=18
x2=(3-33)/2=-15 - не удовлетворяет условию
Скорость первого веловипедиста 18 км/ч