<em>8+4,61+7+16,29=(8+7)+(4.61+16.29)=15+20.9=</em><em>35.9</em>
(tg2a-ctg2a)(tg2a+ctg2a)/4ctg4a=(tg2a-tg(π/2-2a))*(tg2a+tg(π/2-2a))/4ctg4a=
=sin(4a-π/2)*sin(4a+π/2)/cos2a*cos(π/2-2a)*cos2a*cos(π/2+2a(*4ctg4a=
=-cos4a*cos4a/cos²2a*sin2a*(-sin2a)*4ctg4a=cos²4a/sin²2a*cos²2a*4ctg4a=
=4ctg²4a/4ctg4a=ctg4a
(cosa-cos3a)/(1-cos2a) + (sina-sin3a)/sin2a=
=2sin2asina/2sin²a -2sinacos2a/2sinacosa=sin2a/sina - cos2a/cosa=
=(sin2acosa-cos2asina)/sinacosa=sina/sinacosa=1/cosa
-sin п/4 + cos(-п/4)= -sin 45 + cos 45= -√2/2 + <span>√2/2=0
</span>
Если по основному условию, то 1^3+103^3=103*(n=103*103)+1