А) ОДЗ: 3-2х>0; 2х<3; х<3/2
Т.к. основание логарифма 5>1, то функция у=log_{5}(t) является возрастающей, а значит
х<-11 - удовлетворяет ОДЗ
Ответ: (-бесконечности; -11)
б) ОДЗ: 2+3х>0; 3х>-2; х>-2/3
Т.к. основание логарифма 0,6<1, то функция у=log_{0,6}(t) убывающая, а значит
С учетом ОДЗ получаем
Ответ:
3/8+15/7*21/20*4/3=3 целых 3/8
Область определения функции - это такие значения аргумента, при которых можно найти значения функции. В данном случае есть ограничения: корень (выражение под корнем должно быть неотрицательным) и знаменатель (на ноль делить нельзя). Получаем:
Ответ: D(y): [1; 3]
№4 1-в 2-а (гипербола) 3-б (парабола)
№6 =√81*√144 / √225= 9*12 / 15=3*12 / 5=36/5=72/10=7,2