Производная: y'=2x+1, y'(1)=3.
Уравнение касательной: y-2=3(x-1), y=3x-1
15÷25-(8÷5)^5=15÷25-40÷25=-25÷25=-1
Для справки) Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q
в общем все решается исходя из теоремы Виета)
1) сумма = 9 произведение = 20
2) составим уравнение исходя из (x-x1)(x+x2), где x1 и x2 - корни
(x-8)(x+1)=x^2+x-8x-8=x^2-7x-8
3)по теореме Виета , произведение - свободный член, т.е 72 один корень 9, а второй 72/9=8
4)сумма = 12 ну и найдем, что корни то есть 12/4 = -3(1 корень) второй корень - 3*3=-9
(проверкой определяем знак перед корнем, тут минус) откуда c = произведению и равен 27)
Σ - сумма
Σ=180(n-2), где n-количество углов
Σ=180(15-2)=180*13=2340
отв: 2340