1)f`(x)=(1*(x²+8)-2x*(x+1))/(x²+8)²=(x²+8-2x²-2x)/(x²+8)²=(-x²-2x+8)/(x²+8)=0
-x²-2x+8=0⇒x²+2x-8=0⇒x1+x2=-2 U x1*x2=-8⇒x1=-4 U x2=2
_ + _
__________________________________
убыв -4 возр 2 убыв
min max
убыв x∈(-≈;-4) U (2;≈) возр x∈(-4;2)
ymin=-3/22 ymax=3/12
f`(x)=(1*(x+2)-1*x)/(x+2)²=2/(x+2)²>0 x∈(-≈;≈)т.к. (х+2)²Ю0 при любом х
Площадь прям-ного тр-ника равна половине произведения катетов.
ab/2 = 5
a + b = 11
Отсюда следует
ab = 10
a + b = 11
a = 1; b = 10
Решение:
S = 91 - площадь.
P = ? - периметр.
Площадь равна произведению сторон.
0) x1 + x2 = P - формула периметра.
1) X * Y = 91 - формула площади.
2) X = 6 + Y - вторая сторона на шесть раз больше другой.
Подставим второе уравнение в первое.
(6+Y)*Y = 91
6*Y + Y^2 = 91 - получили квадратное уравнение.(Y^2 - Y в квадрате), уравнения вида ax2+bx+c=0
Найдем его корни через дискриминант.
D = b^2 - 4*a*c - формула дискриминанта.
D = 6^2 + 4*1*91
D = 400
Найдем корни теперь:
X1,2 = (-b +/- D^1/2)/2a - формула нахождения корней
т.е для x1 =(-b + D^1/2)/2a
x2 = (-b - D^1/2)/2a
Получаем X1 = 7
X2 = -13
Берем X1 =7 - он больше нуля.
Подставляем теперь его в формулу 2 вместо Y.
X = 6 + 7
Теперь ищем периметр P = 7 + 13; P = 20.
Проверяем ответ 7 * 13 = 91.
Уравнение имеет два корня, если дискриминант больше нуля. По формуле ты его ищешь, получается (а+1)^2-4a^2. Потом раскрываешь скобки. и решаешь неравенство -3a^2+2a+1>0. По методу интервалов у тебя получается, что a принадлежит (-2\6, 1).