х принадлежит отрезку от 2 11/13 до плюс бесконечности
A₁;a₂=a₁+d;a₃=a₁+2d;
b₁=a₂=a₁+d; b₂=a₁=b₁q; b₃=b₁q²=a₃=a₁+2d;
q=b₂/b₁=a₁/(a₁+d);
q=b₃/b₂=(a₁+2d)/a₁;
a₁/(a₁+d)=(a₁+2d)/a₁⇒
a₁²=(a₁+d)·(a₁+2d);⇒a₁²=a₁²+a₁d+2a₁d+2d²;⇒2d²+3a₁d=0;
d(2d+3a₁)=0;⇒d≠0;
2d+3a₁=0; d=-3a₁/2;
q=[a₁+2(-3a₁/2)]/a₁=(a₁-3a₁)/a₁=-2a₁/a₁=-2;
q=-2
2а+2б/2=11
а*б=24 см2
решается система
а+б=11
а*б=24
ответ 3 и 8
(x - 9)/(5 - 0.2^(10 - x)) ≥ <span>0
Учтём, что 0,2 = 1/5 = 5</span>⁻¹
Теперь наш пример:
(х - 9)/(5 - 5ˣ⁻¹⁰) ≥ 0
Метод интервалов. ищем нули числителя и знаменателя:
а) х - 9 = 0
х = 9
б) 5 - 5ˣ⁻¹⁰ = 0
5ˣ⁻¹⁰ = 5
х - 10 = 1
х = 11
теперь числовая прямая:
-∞ [9] (11) +∞
- + + знаки (х - 9)
+ + - знаки (5 - 5ˣ⁻¹⁰ )
IIIIIIIIIIIIIIII решение неравенства
х∈ [9; 11)
целые решения: 9 и 10
Ответ: 90