Пусть √a=t, a √y=n, тогда
=(t²-n²)/(t+n)=[(t-n)(t+n)]/(t+n)=t-n
t-n=√a-√y
1. y'=3cosx-3x^5
2. x≠0 x≠0
100-x^2>=0 x^2<=100 [-10;10]
ответ х [-10;0) U (0;10]
3. (2^8)^(1/7)/4*2^(1/7)=2*2^(1/7)/(4*2^(1/7))=1/2
Знаметель дроби не равен 0:
ln[(x - 2)/(4 - x)] ≠ 0
ln[(x - 2)/(4 - x)] ≠ ln1
(x - 2)/(4 - x) ≠ 1
x - 2 ≠ 4 - x
x + x ≠ 4 + 2
2x ≠ 6
x ≠ 3
Подлогарифмическое выражение больше 0:
(x - 2)/(4 - x) > 0
(x - 2)/(x - 4) < 0
Нули числителя: x = 2
Нули знаменателя: x = 4
+ 2||||||||||||||||-||||||||||||||||||4 +
---------------------0----------------------------0-------------> x
2 < x < 4
Но x ≠ 3
Поэтому x ∈ (2; 3) U (3; 4).
Ответ: D(y) = (2; 3) U (3; 4).