Трапеция ABCD, BK - биссектриса угла B, причем K - середина AD; M - середина BC; AB=BC.
∠ABK=∠KBC по условию; ∠KBC=∠BKA как внутренние накрест лежащие ⇒∠ABK=∠BKA, то есть треугольник KAB равнобедренный, KA=AB. Обозначим DK=KA=AB=BC=a. Проведем BL║MK. По теореме косинусов, примененной к треугольникам LAB и DAB, имеем: