40*2=80
1см=100м
80:100=0,8м
В Д
Е
О
С А
СЕ-биссектрисса, СО-медиана, угол САВ-15град. В тр-ке АСВ угол В=180-90-15=75град. В тр-ке ВСЕ угол ВЕС=180-45-75=60град. Смежный с ним угол СЕА=180-60=120град.
Достроим треугольник АСВ до прямоугольника. СД и АВ - диагонали, в точке пересечения делятся пополам. СО=ОА. В равнобедренном треугольнике СОА угол А=углуС=15град, тогда угол СОА=180-15-15=150град. Смежный с ним угол СОЕ=30град.
В тр-ке СЕО угол ЕСО=180-120-30=30град.
Рисунок схема без соблюдения градусов углов
Треугольник АGB -равносторонний (два угла павнны 60, значит и третий 60).
Угол САG=30 (90-60).
BG=AB=BC.
Значит ВСG- равнобедренный с углом при вершине 30 градусов.
Угол при основании этого треугольника BGC=(180-30)/2=75 градусов
Искомый уго АGC=BGC+BGA=60+75=135 градусов
Пусть a и b - катеты прямоугольного треугольника. Площадь треугольника S=a*b/2, а периметр треугольника P=a+b+c, где c - гипотенуза. Но так как c=√(a²+b²), то для нахождения катетов мы имеем систему двух уравнений с двумя неизвестными:
a*b/2=S
a+b+√(a²+b²)=P
Решая эту систему, находим катеты a и b.
<span>Этот сектор составляет 1/9 от круга.( 360° :60° =9)</span>Следовательно, и его площадь равна одной девятой площади круга.Площадь круга находим по формуле<span>S=πr²=36π см²</span>Площадь сектора равна<span>36π:9=4π см²</span>