1)7-2x-x^2)-(x-2)(x+3)=7-2x-x^2-x^2-x+6=-2x^2-3x+13
2)(3m^2+3n^2)-(2m+n)(m+2n)=3m^2+3n^2-2m^2-5mn-2n^2=m^2-5mn+n^2
3)u(u+v)-(v-1)(u-1)=u^2++uv-uv+v+u-1=u^2+v+u-1
4)x^2+1)(x^2+2)=x^4+2x^2+x^2+2=x^4+3x^2+2
5)3+b^3)(b^3-4)=3b^3-12+b^6-4b^3=b^6-b^3-12
График параболы в общем случае выглядит следующим образом:
y = ax² + bx + c, где a,b,c = const
Так как парабола проходит через начало координат её уравнение примет вид:
y = ax²
Подставим координаты точки B и найдём значение коэффициента а.
y = -0,25x² - уравнение искомой параболы
Найдём пересечение с прямой y = -16
-16 = -0,25x²
x² = 64
x = ±8
Координаты пересечения: (8, -16) и (-8, -16)
4.
27м=27/60 ч=9/20ч=0,45ч
х-проехал до встречи 1й
27-х-проехал до встречи второй
т.к. встреча была ч/з 1 час, то
х/1=х-скорость первого
(27-х)/1=27-х-скорость второго
27/х-27/(27-х)=0,45
27(27-х)-27х=0,45х(27-х)
729-27х-27х=12,15х-0,45х²
0,45х²-66,15х+729=0
х²-147х+1620=0
D = (-147)²<span>- 4·1·1620 = 21609 - 6480 = <span>15129
</span></span>x1 = (147 - √15129)/(2*1) = (147 - 123)/2 = 24/2 = 12 к/ч скорость первого
x2= (147 + √15129)/(2*1) = (147 + 123)/2 = 270/2 = 135-не подходит, т.к. тогда бы 27 км проехал за 27/135=0,2ч и встречи ч/з час не было бы
27-12=15 км/ч-скорость второго
5,
х-первичная производительность 1го
у-первичная производительность 2го
1-объем бассейна
Система уравнений
1/(х+у)=8
1/(1,2х+1,6у)=6
х+у=1/8
1,2х+1,6у=1/6
у=1/8-х
1,6у=1/6-1,2х
у=1/8-х
у=(1/6-1,2х)/1,6
1/8-х=(1/6-1,2х)/1,6
1,6(1/8-х)=1/6-1,2х
0,2-1,6х=1/6-1,2х
-1,6х+1,2х=1/6-0,2
-0,4х=1/6-1/5
-0,4х=5/30-6/30
-0,4х=-1/30
0,4х=1/30
х=1/30:0,4=1/30:2/5=1/30*5/2=1/6*1/2=1/12 первичная производительность 1го
1/12*1,2=1/10-вторичная производительность 1го
1:1/10=10ч-за такое время наполнит бассейн первый насос после ремонта
Ответ:
86*64?
ну там не видно и мне кажется что это