Пусть n и n+1- два последовательных натуральных числа. По условию, (n+n+1)=(2*n+1)²=n²+(n+1)²+612. раскрывая скобки и приводя подобные члены, приходим к уравнению n²+n-306=0. Дискриминант D=1-4*(-306)=1225=35². Отсюда n1=(-1+35)/2=17, n2=(-1-35)/2=-18. Но так как n - натуральное число, то n=17. Тогда n+1=18. Ответ: 17 и 18.
1) 2\5
2) 0
3) 9\15
4) 10\17
5) √25=5
6) √0,49=0,7
7) √36=6
8) √225=15
Решение смотри на фотографии