Скорость обычная=х км/ч. тогда стала скорость (х+10) км/ч
Ехал он на 18 мин(0.3ч) меньше чем обычно, а расстояние одно и тоже.
Составляем уравнение:
60/(х+10)+0.3=60/х умножим все на х(х+10)
60х+0.3х*2(в степени 2) +3х=60х+600
0.3х*2+63х-60х-600=0
0.3х*2+3х-600=0
0.1х*2+х-200=0(разделили все на 3, так проще считать)
D=1+80=81
х=(-1+9)/0.2=40
обычная скорость 40км/ч, но его скорость была на 10 км/ч больше и значит она равна 40 + 10 =50
Ответ 50 км/ч
√(1+sinx) - √(1-sinx) =1+cosx ;
ясно, что 1+sinx≥0 ; 1-sinx ≥0 ; 1+cosx ≥0.
следовательно √(1+sinx) - √(1-sinx) ≥0.⇔√(1+sinx) ≥ √(1-sinx) ⇔sinx ≥0.
---
(√(1+sinx) - √(1-sinx))² = (1+cosx)² ;
(1+sinx) - 2√(1+sinx)(1-sinx) + (1-sinx) = 1+2cosx+ cos²x ;
2 - 2|cosx| = 1+2cosx+ cos²x ⇔ cos²x +2cosx +2|cosx| -1 =0 .
Если:
а) cosx< 0⇒cos²x +2cosx -2cosx -1 =0 ⇔cos²x =1 ⇒ cosx = -1⇒
x = π+2πn , n∈Z .
б) cosx≥ 0⇒cos²x +4cosx -1 =0 ⇔
[cosx = -2-√5 < -1 (не имеет решения) ; cosx = -2+√5 =0.
x = arccos(√5-2) + 2πn , n∈Z (должна быть sinx ≥0 ) .
ответ : π+2πn ; arccos(√5-2) + 2πn , n∈Z.
* * * * * * *
1+sinx =sin²x/2 +2sinx/2*cosx/2 +cos²x/2 =(sinx/2 +cosx/2)² ;
1-sinx =sin²x/2 -2sinx/2*cosx/2 +cos²x/2 =(sinx/2 -cosx/2)² ;
1+cosx =2cos²x/2 .
√(1+sinx) - √(1-sinx) =1+cosx ⇔|sinx/2 +cosx/2| +|sinx/2 -cosx/2| =2cos²x/2 и
т.д.
Натуральные 0 23 1 13 56 10 136 5 7
целые 0 23 1 13 56 10 136 7 5
№2
1) 3 и √9,2 ; √9 = 3 , тогда √9,2 > 3 . Значит : <span>
3<</span><span>√9,2
[1) 7 и </span>√50 ; √49=7 => √<span>50 > 7
</span> 7<<span>√50
2) 2</span>√1,5 и 3√0,6 ; √1,5≈1,2 ; √0,6 ≈ 0,77
2*1,2 = 2,4 ; 3*0,77=2,3 ; 2,4>2,3
2√1,5 > 3<span>√0,6
</span>2) 5√0,4 и 2√2,6 ; √0,4≈0,63 ; √2,6≈1,61
5*0,63= 3,15 ; 2*1,61=3,22
5√0,4 < 2√2,6
№3
1) √3х+12
Корень из отрицательного числа не извлекается => х <span>∈ [</span>-4; +<span>∞)
</span>Ответ: x∈ [-4;+<span>∞)
</span>2) √15-5х
Ответ: х ∈ ( - ∞; 3]