Меньшая диагональ основания призмы (ромба) равна стороне ромба,
так как в треугольнике АВD все углы по 60°.
Итак, ВD=2√3.
Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3.
Тогда АС=6см.
В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°.
Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2.
Или так:В'В=BD*tg30°=2√3*(√3/3)=2.
ВВ'=СС'=2. Это высота призмы.
Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору:
АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10.
Ответ: большая диагональ призмы равна 2√10.
<em>Очевидно, площадь данной пирамиды считается по формуле:</em>
А) На прямой а отложим отрезок АВ, равный 5 см.
Проведем две окружности с центрами в точках А и В и радиусом, равным 5 см. Точка пересечения этих окружностей - С - третья вершина треугольника.
б)
1) Если в равнобедренном треугольнике один любой угол равен 60°, то это равносторонний треугольник.
Его строить так же, как и предыдущий, только длина отрезка АВ и радиусы окружностей должны быть 6 см.
2) На прямой а отметим точку В.
Построим точки пересечения дуг произвольного радиуса с центром в точке В и прямой а - это точки О и Р.
С центрами в точках О и Р проведем окружности произвольного одинакового радиуса, большего половины отрезка ОР.
Через точки пересечения этих окружностей проведем прямую b. Она будет перпендикулярна прямой а.
От точки В на прямых а и b отложим одинаковые отрезки ВА и ВС, длиной 6 см.
Треугольник АВС - прямоугольный, равнобедренный с боковой стороной 6 см.
3) На прямой а отложим отрезок АО, равный 6 см.
Проведем две окружности одинакового радиуса, равного АО, с центрами в точках А и О.
С - одна из точек пересечения этих окружностей.
Проведем прямую b через точки пересечения окружностей.
На прямой b отложим отрезок СВ, равный 6 см.
АВС - искомый треугольник.
Доказательство:
ΔАОС - равносторонний, значит ∠АСО = 60°.
b - серединный перпендикуляр к АО, значит и биссектриса треугольника АСО.
Тогда ∠АСВ = 30°.
Гипотенуза^2 = 81+144
гипотенуза = 15 см
площадь прямоугольного треугольника равна половине произведения катетов
Следовательно 54 см