Очевидно, что пассажир идёт быстрее, чем едет эскалатор.
То есть x>y.
Если x=y, то против движения он будет идти вечно.
Если xЕсли пассажир забегает вверх на x ступ., а эскалатор съезжает вниз на y ступ. за минуту, то скорость пассажира будет x-y ступ/мин.
А скорость по ходу x+y ступ/мин.
Если мы разделим длину эскалатора k на скорость пассажира (x+y) или (x-y), то получим время, за которое он пройдёт эскалатор.
Умножив это время на его собственную скорость x, мы получим ступеньки, которые он пересчитает. Поэтому kx.
Вроде понятно объяснил.
Теперь решаем систему.
kx/(x+y)=40
kx/(x-y)=120
Умножаем
kx=40(x+y)
kx=120(x-y)
Приравниваем правые части
40(x+y)=120(x-y)
x+y=3(x-y)=3x-3y
4y=2x
x=2y
Скорость пассажира в 2 раза больше скорости эскалатора.
kx/(x+2x)=kx/(3x)=k/3=40
k=120 ступенек на эскалаторе.
Х-число
1/3*1/4х*n=3*1/2x
1/12*x*n=3/2*x
n=3x/2:x/12=3x/2*12/x=18
умножить на 18
В знаменателе: sin 4й четверти, поэтому ставим минус.
т.к. 2п, не меняем функцию
В числителе: cos 2й четверти, поэтому ставим минус.
т.к. п/2, меняем функцию на sin
Получаем: -sin a/-sin a=1
A²+b²+ab=a+b
Пусть
a+b=t
Возведем обе части в квадрат
a²+2ab+b²=t²
Выразим
a²+b²+ab=t²-ab
и
по условию
a²+b²+ab=t
Приравниваем правые части
t²-ab=t ⇒ab=t²-t значит
a²+b²=t-ab
a²+b²=t-t²+t
a²+b²=2t-t²
Квадратный трехчлен
2t-t² принимает наибольшее значение в точке t=1
t=1 - абсцисса вершины параболы.
При t=1 2t-t²=2*1-1²=2-1=1
О т в е т.<span>максимальное значение выражения а²+b² при </span><span>a²+b²+ab=a+b равно 1.</span>