ABC треугольник с прямым углов в вершине С.
По отрезкам касательных пусть x,y,z отрезки касательных, и x это отрезок проведенный с прямого угла С ,тогда x=r=7, откуда
7+y=AC
7+z=BC
y+z=AB=46
P=AC+BC+AB=14+y+z+46=14+2*46=106
<span>1.Если две касательные к окружности параллельны,то расстояние между ними равно диаметру окружности.</span>
<span>5.Если от центра окружности опустить перпендикуляр на касательную к той окружности,то основанием перпендикуляра будет точка касания.</span>
___1___ = 90 град.
___2___ = 30 град.
___3___ = 10 см.
___4___ = 1/2 MP
___5___ = 7 см.
___6___ = 20 см
У тебя должна получиться такая задача:
Задача: В прямоугольном треугольнике MNP
угол N = 90 град. угод Р = 60 град. MP+PN =27
см. Найдите MP и PN
Решение:
1) угол М + угол Р = 90 град., откуда угол М =
30 град., и поэтому MP = 2* 10 см.
2) По условию MP+PN = 27см., следовательно
2* 1/2 MP + PN = 27 см., откуда PN= 7 см. MP
= 20 см.