Треугольник BCH подобен треугольнику ABC и <A = <BCH
sin <BCH = BH/BC
BH = корень(ВС^2-СН^2) = корень(225- 81) = корень(144) = 12
sin <A = 12/15 = 4/5 = 0,8
А)
АО = ОС по условию,
ВО = OD по условию,
∠ВОА = ∠DОС как вертикальные, ⇒
ΔВОА = ΔDOC по двум сторонам и углу между ними.
Значит, ∠ВАО = ∠DCO, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей АС, ⇒
АВ║CD.
б) ∠ОСЕ = 142°,
∠OCD = 180° - ∠ОСЕ = 180° - 142° = 38° по свойству смежных углов.
∠ОАВ и ∠ОCD - накрест лежащие при пересечении прямых АВ и CD секущей АС. Что бы прямые АВ и CD были параллельны, необходимо, чтобы накрест лежащие углы были равны:
∠ОАВ = ∠ОCD = 38°
Дано: ABCD - прямоугольная трапеция, AD = 22 см, BC = 6 см, CD = 20 см.
CK - высота трапеции.
Найти S.
<u>Решение:
</u>
см
<u>
</u>Из прямоугольного треугольника CKD: по т. Пифагора найдем высоту CK
<u>
</u>Тогда площадь трапеции:
<u>
</u>
<u>
</u>Ответ: 168 см²<u>
</u>
360-31*2/2 = 149
___
Есть вопросы - задавай.
Это пары углов с общей вершиной, которые образованны при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого угла