1
2(√2/2sinx+√2/2cosx)=1
sin(x+π/4)=1/2
x+π/4=π/6+2πn U x+π/4=5π/6+2πn
x=-π/4+π/6+2πn U x=-π/4+5π/6+2πn
x=-π/12+2πn,n∈z U x=7π/12+2πn,n∈z
2
2(√2/2sinx-√2/2cosx)=1
sin(x-π/4)=1/2
x-π/4=π/6+2πn U x-π/4=5π/6+2πn
x=π/4+π/6+2πn U x=π/4+5π/6+2πn
x=5π/12+2πn,n∈z U x=13π/12+2πn,n∈z
3
√2cosπ/4cosx+√2sinπ/4sinx-cosx=0,5
√2*1/√2*cosx+√2*1/√2*sinx-cosx=0,5
cosx+sinx-cosx=1/2
sinx=1/2
x=π/6+2πn,n∈z U x=5π/6+2πn,n∈z
5cos2a=5(2cos^2-1)=5(2*(-0,5)^2-1)=5*(-0,5)=-2,5
<u>(-1)</u> × <u> 1-х </u> × <u> х </u> = <u>х - 1</u> × <u> х </u> = <u> 1 </u> = <u> 1 </u>
х 1+х х²-1 х(1+х) (х-1)(х+1) (1+х)(х+1) х+1+х²+х
= <u> 1 </u> или можно так написать = <u> 1 </u>
х²+2х+1 (х+1)²