Ответ:
Объяснение:
Если треугольник пряпоугольный , то С скорее всего гипотенуза , а значит В= 12 (пифагорова тройка 5,12,13) sin(a) = 5/13 ; cos(a) = 12/13 ; tg(a)= 5/12
если что угол a лежит напротив а
Треугольник АВС, уголС=90, уголВ=20, СМ-медиана, СН-высота, медиана в прямоугольном треугольнике прведенная на гипотенузу=1/2 гипотенузы, АМ=МВ=СМ=1/2АВ, треугольник СМВ равнобедренный, СМ=МВ, уголВ=уголМСВ=20, треугольник НСВ прямоугольный, уголНСВ=90-уголВ=90-20=70, уголНСМ=уголНСВ-уголМСВ=70-20=50
При пересечении двух прямых образуется две пары вертикальных и две пары смежных углов . Пусть /_1 = Х, тогда /_2 равен 4Х ( это 2 смежных угла ),
Х + 4Х = 180
5Х = 180
Х = 36, /_1 = 36 градусов , /_2 = 36 х 4= 144 ( градуса ), /_3 = /_1, /_2 = /_4 ( вертикальные углы ) , значит /_3 = 36 градусов , /_4 = 144 градуса .
1)
Дано:
прям. ABCD
AB=12 см
AC - диагональ
угол ACB/углу ACD = 1/2
Найти:
AC-?
Решение:
Диагональ делит прям. на два равных прямоугольных треугольника.
Пусть угол ACB =x, тогда угол ACD=2x.
Угол CAD = углу ACB = x (накерст лежащие при AD||BC и сек. AC)
Расс. тр. ACD
x+2x+90⁰=180⁰
3x=90⁰
x=30⁰
Значит угол CAD=30⁰, угол ACD=2*30⁰=60⁰
Из сво-ва прям. тр-ка, катет лежащий против угла в 30⁰ равен половине гипотенузы ⇒AC=2*CD = 2*16=32 см
Ответ: диагональ прям-ка равна 32 см
2)
Дано:
прям. тр. ABC
угол С = 90⁰
AB=11√11 см
tgα=√2/3
Найти:
AC-?
Решение:
tgα=BC/AC
Введем x, тогда tgα=√2x/3x
По т. Пифагора:
AB²=AC²+BC²
(11√11)²=(√2x)²+(3x)²
1331=11x²
121=x²
x=11
Отсюда:
BC=√2*11=11√2
AC=3*11=33
Ответ: АС равно 33
3)
Дано:
прям. тр. ABC
угол С=90⁰
AB=20
AC=2√19
Найти:
cosβ - ?
Решение:
Cosβ=BC/AB
по т. Пифагора
BC=√20²-(2√19)²=√400-76=√324=18
Cosβ=18/20=0.9
Ответ: cosβ=0.9