В лотерее 5 выигрышных номеров и 31 невыигрышный
6sin²x-5sinxcosx+cos²x=0
Разделим на cos²x
6*tg²x-5*tgx+1=0
Введём замену переменной tgx=t
6t²-5t+1=0 Решаем это уравнение.
Дискриминант D=(-5)²-4*6*1=25-24=1
Находим корни: t₁=(5-1)/12=4/12=1/3 и t₂=(5+1)/12=6/12=1/2
Получили
tgx=1/3 x=arctg1/3+πn, n∈Z
tgx=1/2 x=arctg1/2+πn, n∈Z
2sin²x-sinxcosx=0
Делим на cos²x
2tg²x-tgx=0
tgx вынесем за скобки
tgx(2tgx-1)=0
Произведение равно 0 когда один или оба множителя равны 0
tgx=0 x=πn, n∈Z
2tgx-1=0 2tgx=1 tgx=1/2 x=arctg1/2+πn, n∈Z
4sin²x-2sinxcosx-4cos²x=1
sin²x+cos²x=1 - одна из основных тригонометрических формул
4sin²x-2sinxcosx-4cos²x=sin²x+cos²x
4sin²x-sin²x-2sinxcosx-4cos²x-cosx=0
3sin²x-2sinxcosx-5cos²x=0
Разделим на cos²x
3tg²x-2tgx-5=0
Введём переменную tgx=t
3t²-2t-3=0
D=(-2)²-4*3*(-5)=4+60=64
x₁=(2-8)/6=-1 x₂=(2+8)/6=5/3
tgx=-1 x=(5/4)π+πn, n∈Z
tgx=5/3 x=arctg(5/3)+πn, n∈Z
Ctg^2x-6ctgx+5=0
Пусть ctgx=n
n^2-6n+5=0
n=1 n=5
ctgx=1 ctgx=5
x=arcctg1+ Pi n, n ∈ Z x=arcctg5+ Pi n, n ∈ Z
x=Pi/4 + Pi n, n ∈ Z
Ну и ответ.
===========================второй тоже больше 0
определить нельзя
Х в деятой степени умножить на 741