Периметр равнобедренного треугольника равен сумме всех сторон.
В данном случае возьмем одну сторону за х,
тогда основание х+9
Составим уравнение:
х+х+х+9=45
3х=36
х=36/3
х=12
12 см - боковая сторона треугольника.
<span>Наибольшая диагональ данной призмы - диагональ прямоугольника со сторонами а и 2а.
d² = a² + (2a)² <=> d² = 5a² <=> a = d/√5
Объем призмы:
V = Sосн. · H
Площадь правильного шестиугольника со стороной a:
S = (3√3/2)a²
Высота прямой призмы равна ее боковому ребру.
V = (3√3/2)a³
V = (3√3/2)(d/√5)³ = (3√3 / 10√5) · d³</span>
Решение задания смотри на фотографии
1) если равенство подразумевает под собой равенство площадей, то конечно же нет
2) нельзя, по этому же определению
3) какая нибудь кривая пирамида, здесь нельзя рисовать, поэтому картинку привести не смогу
S(ABF) : S(ABCDEF) = 1 :6 > 1: 8 ⇒ BK пересекает сторону AF .
Пусть M точка пересечения [BK] и [ AF] ; M ∈ [ AF ] .
S₁ =S(ΔABM ) , S ₂=S(ABCDEF) - S₁ = S(ABCDEF) - S(ΔABM ).
Обозначаем AB = BC =CD = DE = EF =FF = a ;
⇒ CF = 2a , CF| |AB ( свойство правильного шестиугольника ) .
AM = x⇒ M F = a - x ;
CK : KF ---?
----------------------------------------------------------------------------------------------------------------------
{ S₁ : S ₂ = 1: 8 ; S₁ + S ₂ = S ( S _ площадь правильного шестиугольника ABCDEF) .
S₁ = 1/9*S ;
==================================================================
1/2 *a* x *sin 120° = 1/9*(a²√3)/4 ;
1/2 *a* x *(√3)/2 = 1/9*6*(a²√3)/4 **** sin 120° =sin(180° - 60°) = sin60° =√3/2 ***;
x = 2/3a ⇒ M F = a - x =a -2/3a = 1/3a .
ΔFKM подобен ΔABM (CF| |AB) :
FK/AB =MF/MF;
FK/a = (1/3a)<em>/</em>(2/3a) ;
FK = a/2 ;
*** наконец ***
CK / FK = (CF+FK)/FK =(2a+a/2)/(a/2) =5 :1 .
ответ : CK / FK = 5.