Решение в картинке:
Особо не обосновывал,ибо времени нет...
Если треугольник равнобедренный, то
1. Углы при основании равны.
2. Биссектриса, проведенная к основанию, является медианой
3. и высотой
Доказательство:
Проведем биссектрису ВН.
АВ = ВС так как треугольник равнобедренный,
∠АВН = ∠СВН, так как ВН - биссектриса,
ВН - общая сторона для треугольников АВН и СВН, значит
ΔАВН = ΔСВН по двум сторонам и углу между ними.
Из равенства треугольников следует:
1) ∠ВАС = ∠ВСА,
2) АН = НС ⇒ ВН - медиана,
3) ∠АНВ = ∠СНВ, а так как они смежные, их сумма 180°, значит
∠АНВ = ∠СНВ = 90°. Значит, ВН - высота.
Отложив векторы a и b из одной точки, получаем Δ, по третьей стороне которого идет вектор a-b. По теореме косинусов квадрат этой стороны равен сумма квадратов первых двух сторон минус удвоенное произведение этих сторон на косинус угла между ними, то есть
1²+1²-2·1·1·cos 45°=2-√2. Ответом будет служить корень из этого выражения.
Пусть а - угол при основании и х - половина основания. Тогда боковая сторона 4х, и значит cos(a)=1/4, sin(a)=(√15)/4. По теореме синусов 4x/sin(a)=2R, т.е. x=(√15)/8. Дальше tg(a/2)=√((1-cos(a))/(1+cos(a)))=√(3/5). Значит r=x*tg(a/2)=(√15)/8*√(3/5)=3/8.