<em>1. f'(x)=(3x⁴-8x³-6x²+24x+3)'=12x³-24x²-12x+24=12x²*(x-2)-12*(x-2)=</em>
<em>(x-2)*(12x²-12)=12(x-2)*(x-1)*(x+1)=0</em>
<em>Cтационарные точки х=2; х=1; х=-1</em>
<em>2. y'=3x²+12x-15=3*(x²+4x-5)=0, по Виета х=-5, х=1. </em>
<em>Для нахождения точек экстремума решим неравенство</em>
<em>3(x-1)*(x+5)>0, методом интервалов. </em>
<em>____-5________1___</em>
<em>+ - +</em>
<em>Значит, </em><em>х=1 - точка минимума, а х=-5- точка максимума.</em>
<em>3. f'(x)=(2x³+3x²-12x+5)'=6х²+6х-12=6*(х²+х-2)=0 По Виета х=-2; х=1 оба корня попадают в рассматриваемый отрезок.</em>
<em>f(-3)=2*(-3)³+3*(-3)²-12*(-3)+5=-54+27+36+5=14; f(-2)= 2*(-2)³+3*(-2)²-12*(-2)+5 =-16+12+24+5=25; f(1)= 2+3-12+5=</em><em> -2 наименьшее значение функции</em><em>; </em>
<em>f(4)=2*4³+3*4²-12*4+5 =128+48-48+5=</em><em>133 наибольшее значение</em>