Одна сторона - х см
вторая - х-0,3 см
третья - х-0,4 см
четвертая - х-0,5 см
периметр
х+х-0,3+х-0,4+х-0,5=8
4х-1,2=8
4х=8+1,2
4х=9,2
х=9,2/4
х=2,3
2,3-0,3=2
2,3-0,4=1,9
2,3-0,5=1,8
Р=2,3+2+1,9+1,8=8 см
Если провести к большему основанию трапеции две высоты из углов, принадлежащих меньшему основанию, то мы получим прямоугольник, в котором противоположные стороны равны. Так же мы получим два прямоугольных треугольника. Теперь из большего основания вычитаем сторону прямоугольника, которая параллельна меньшему основанию трапеции:
16 - 8=8.
Так как у нас два равных треугольника, то мы этот результат делим на 2 :
8 : 2 = 4 - это катет прямоугольного треугольника. Теперь находим высоту, которую мы провели ранее, по теореме Пифагора :
Высота = 5 ^ 2 - 4 ^2= 25 - 16 = 9. Теперь из получившегося результата извлекаем корень и получаем 3. Это высота.
Дальше пользуемся формулой площади трапеции:
S= ((a + b) h) / 2
S= (( 16 + 8) 3) / 2 = 36
Ответ : 36
Высота трапеции 4(катет, лежащий против угла 30 градусов). Площадь равна (18+22)/2*4=80
пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
Ответ: √6
АКМ=42:2=21, т.к. АКМ=КАС внутренние накрест лежащие, КАС=МКА, т.к. АК биссектриса по условию