Периметр ВСМ-АВМ= (ВМ+ВС+МС)-(АВ+ВМ+АМ)=10
ВМ+ВС+МС-АВ-ВМ-АМ=
ВС-АВ, так как АМ=МС
ВС -АВ=10, АВ=6
ВС-6=10
ВС=4
Ответ:
Средняя линия равна 19см.
Объяснение:
Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. =>
Средняя линия равна (BC+AD)/2 = (AB+CD)/2 = (18+20)/2 = 19см.
Или так: вершины А, В, С и D - точки, из которых проведены касательные к вписанной в трапецию окружности (стороны трапеции). Отрезки касательных, проведенных из одной точки, равны =>
AD = x + y. (1)
BC = (18-x) + (20-y). (2)
Сложим (1) и (2) и получим: AD+BC = 18+20. =>
Средняя линия равна (18+20)/2 = 19.
<span><em>Гипотенуза прямоугольного треугольника равна 73 см, а площадь 1320 см²</em>
</span><em><u>Найти катеты.</u></em>
Площадь прямоугольного треугольника равна половине произведения катетов.
Следовательно,<em> аb=2S=2640, </em>где <em>а </em>и<em> b-</em> катеты.
По т.Пифагора
<span>а²+b²=73²
</span>Составим систему уравнений:
|......аb=2640
<span><u>|.а²+b²=73²</u>
</span>Умножив первое уравнение на 2 и сложив оба уравнения, получим:
<span>а²+2аb+b²=10609
</span><span>(а +b)²=10609
</span>С помощью калькулятора найдем
<span>а +b=√10609=103 cм
</span>b=103-а
ab=(103-a)*a
<span>103а-а²=2460
</span><span>а²-103а+2460
</span><span>Решив квадратное уравнение, получим два корня
</span><span>а₁=48 см
</span><span>а₂=55 см
</span>b₁=103-48=55<span> см
b</span>₂=48 см<span>
Ответ: Катеты равны 48 см и 55 см</span>
Т.к. d перпендикулярна альфа, значит треугольник OAB прямоугольный, значит по теореме пифагора
аналогично треугольник OAC прямоугольный, и также ОС=5
значит треугольник OBC имеет стороны 5,5,3
полупериметр
по формуле герона