AC=BC=5,
AX=AC-2, AX=5-2=3,
XC=2,
BX=2+5=7,
3+2+7=12.
Точка Х может располагаться или перед точкой С, или после С.
Тангенс домножаем на корень из трех и получаем тангенс равный корень из трех деленый на три.
Это, если не ошибаюсь, 30 градусов. А искомый катет лежит напротив угла в 30 градусов, следовательно равен половине гипотенузы, то есть 5.
По условию AB=AC; BB_1=CC_1 - высоты остроугольного равнобедренного треугольника ABC; M - точка пересечения высот; ∠BMC=B_1MC_1=140°⇒из четырехугольника C_1AB_1M с двумя прямыми углами ∠A=360 -90 -90 -140=40° (поскольку сумма углов четырехугольника равна 360°); ∠B=∠C треугольника ABC равны (180-40)/2=70°.
Ответ: ∠A=40°; ∠B=∠C=70°
Подобные треугольники — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.