<span>1)-3a^7b^3
2)5b^3-5b^2+15b
3)tp-np+5t-5n
4)x^2+2xy+y^2-x^2+y^2=2xy+2y^2
5)x+y=6|*2⇒2x+2y=12
5x-2y=9
7x=21
x=3
y=6-3=3
(3;3)
8)x(x²-y²)+6(x²-y²)=(x+6)(x-y)(x+y)
9)х-скорость 1,х+6-скорость 2
3*(х+х+6)=30
2х+6=10
2х=4
х=2-скорость 1
2+6=8-скорость 2</span>
<em>Если один катет равен х, то второй равен (6-х). Тогда составим функцию у=S(х), выражающую зависимость площадь от значения x:</em>
<em>
</em>
<em>Исследуем функцию на экстремум:</em>
<em>
</em>
<em>Так как при переходе через точку х=3 производная меняет свой знак с"+" на "-", то х=3 - точка максимума. Значит при х=3 треугольник имеет наибольшую площадь. Но так как 6-х=6-3=3, то есть две стороны треугольника равны, то получаем, что наибольшая площадь у равнобедренного треугольника, которая равна
</em>