Пусть а,б,с - углы внутрение
внешие в,г -смежные с б и с , найти нужно а
по теореме о внешнем угле( внешний угол равен сумме двух вгнутренних не смежных с ним ) получаем что : в=а+с,г=а+б
следовательно в+г =а+а+б+с=180+а следовательно а=60 градусов
Дан угол α = 45° наклона бокового ребра к основанию и длина ОС = 5 см (это половина диагонали основания).
<span>Сторона а основания равна: а = ОС/(cos 45</span>°) = 5/(1/√2) = 5√2 см.<span>
1) So = а</span>² = 25*2 = 50 см².
<span>2)Sбок и S.
Находим периметр основания Р = 4а = 4*5</span>√2 = 20√2 см.
Апофема А = √((а/2)² + Н²) = √((50/4)+25) = √(150/4) = 5√6/2 см.
Sбок = (1/2)РА = (1/2)*20√2*(5√6/2) = 100√12/4 = 100√3 см².
<span>Площадь S полной поверхности пирамиды равна:
S = So + Sбок = 50 + 100</span>√3 = 50(1+2√3) ≈ <span><span>223,2051 </span></span>см² <span>
3) CD = а = 5</span>√2 ≈ <span>
7,071068 </span>см .
<span>4)площадь треугольника sdc (это площадь боковой грани):
S(SCD) = </span> (1/2)аА = (1/2)*5√2*(5√6/2) = 25√12/4 = 25√3 см².
Теорема о секущих: произведение одной секущей на её внешнюю часть равно произведению второй секущей на соответственно её внешнюю часть.
Теорема о секущей и касательной: произведение длины секущей на её внешнюю часть есть квадрат длины касательной.
1) Один из вариантов - найти по т. о секущих длину DM, и по 3-му признаку доказать равенство ΔAOM=ΔCOM.
2) По т. о секущих (это МЕ и МА) можно найти дляну ЕМ, а после этого и радиус окружности (который равен ОЕ и FE).
3) Длина касательной есть корень квадратный из произведения отрезков АМ и ВМ.
240/160=x/360
240*360/160=540см
Расположить проектор необходимо на расстоянии в 540 см
4 стороны основания включают по 1 стороне боковой грани. Следовательно периметр равен 5+5+5+5=20