Посмотрите,в чём сложность.
Функция упрощается,потому что в числителе трёхчлен,
который можно представить в формуле а(x-x1)(x-x2)(x-x3)(x-x4),
наверняка вы расписывали так трёхчлен второй степени.
Если вас смущает мой способ с дискриминантом - пожалуйста,решайте биквадратное уравнение(вводите t),лишь бы в формулу со скобками подставили корни.И да,a - коэф.при х^2,чаще его не бывает в ГИА.
Но если так будет - квадратичную функцию раскрывайте "фонтанчиком".
Иначе говоря,какая степень уравнения(большая),столько корней,т.е. скобок.
Дальше сокращаем.И ТА-ДАМ!Остаётся простая квадратичная функция.
Находим нужные нам точки:точки пересения с ох,с oy и самое главное - КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ.Можно так и бросить,эксперту больше не надо.Но я строю табличку,чтобы график был более ровен и точен.
А что такое прямая y=m?
Прямая,параллельная оси ox(Т.Е.X-0,ЭТО БЫВШАЯ ЛИНЕЙНАЯ ФУНКЦИЯ,МЫ КАК БЫ НАПОМИНАЕМ ОБ Х)
А где будет одна общая точка с графиком?
Да как видно,она пройдёт через вершину параболы(забираем y).
Окончательный ответ:при m=-2.25.
A1 = - 4
d = 3
an = 53
n - ?
an = a1 + d (n - 1) = 53
- 4 + 3(n - 1) = 53
- 4 + 3n - 3 = 53
3n = 60
n = 20
Скорее всего так,тебе надо было точки пересеч?
5(2-х)+9х = 10-5х+9х = 10+4х = 4х+10
Ответ: 4х+10 (3)