Большинство изотопов разных химических элементов, которые присутствуют в природе (будем иметь в виду не всю вселенную, а только Землю, и даже только ее кору), устойчивы. Потому что если бы они были радиоактивными, то за время существования Земли давно бы распались. За исключением только самых долгоживущих тира урана-238, калия-40, тория-232 и др. Есть также в природе сравнительно короткоживущие изотопы ряда элементов, которые непрерывно образуются тем или иным путем и непрерывно распадаются. Поэтому их в природе очень мало. Примером может служить изотоп водорода тритий с периодом полураспада около 12 лет: он образуется в верхних слоях атмосферы под действием космического излучения. Из других - углерод-14 с периодом полураспада 5730 лет, он тоже образуется в атмосфере. Есть в природе также очень мало нестабильных технеция, полония, астата, радона, франция, актиния, протактиния. А стабильных нуклидов в природе намного больше - я насчитал 283. И очень много существует искусственно получаемых (не природных) нуклидов.
Для щелочных металлов характерно активное взаимодействие с водой. Было показано, что щелочные металлы в жидком виде реагируют с водой взрывообразно (даже литий) из-за легкости увеличения реагирующей поверхности.
При реакции натрия с водой работают несколько факторов, которые как мешают, так и способствуют расплавлению натрия. Это температура воды и окружающей среды, а также объем кусочка натрия. Маленькие кусочки обычно успевают прореагировать раньше, чем успеют достигнуть температуры плавления. Для больших кусков имеет значение площадь контакта с водой и температура воды и окружающей среды. При достаточном количестве натрия он достигает точки плавления и происходит взрыв.
При кипении жидкостей жидкость переходит из жидкого состояния в газообразное. Таким образом газ берётся из жидкости. Например при кипении воды из воды образуется газ называемый водяным паром.
Ажиотаж создается журналистами, так как в данном вопросе они хоть что-то понимают, в отличие, например, от квантовой физики.
Создание новых элементов важно для понимания ядерной структуры веществ (например, подтверждения предсказанного "острова стабильности"). У элемента 126 ожидается необычно большое время жизни, наряду с высокой плотностью запасенной энергии. У новых элементов велик вклад релявистких эффектов электронов в их свойствах - эти эффекты пока не все исследованы.
Кроме того, для получения новых элементов нужно придумать новые пути, так как известные способы слияния уже исчерпали себя на 118 элементе. И задача обхода трудностей пока не решена.
В литиевой батарейке реакция идет "в одну сторону". То есть, один элемент (литий) вступает в "не обратимую реакцию" с другим элементом. Приложение к такой батарейке внешнего напряжение или пропускание через неё тока, не приведет к восстановлению элементов в их исходное состояние. А даже может привести к взрыву.
А вот литиевый (вообще, любой) аккумулятор, как раз сконструирован таким образом, что при пропускании через него тока, прореагировавшие до этого элементы, восстанавливаются в исходное состояние (почти!) и снова готовы к реакции и генерированию тока.
Про литиевые батарейки можно прочитать здесь - "Литиевые батарейки".
Про литий-ионные аккумуляторы - "Литий-ионный аккумулятор".