A^2+4ab+4b^2
Это обычный квадрат суммы
X²+3x+q=0
|x₁-x₂|=7
По теореме Вьета:
Следовательно:
х₁=-3-х₂
Подставим данное выражение в условие:
|-3-х₂-х₂|=7
|-3-2х₂|=7
Если выражение в модуле положительно, то
-3-2х₂=7
-2х₂=7+3
-2х₂=10
х₂=-5, x₁=2
Если выражение в модуле отрицательно, то
-3-2х₂=-7
-2х₂=-7+3
-2х₂=-4
х₂=2, x₁=-5
Найдем q:
q=х₁*х₂
q=2*(-5)=-10
Ответ: q= -10
Решение смотри на фотографии
<em>y-это сложная функция, т.к. обратная тригонометрическая зависит от степенной, а та в свою очередь от линейной. Производную берем от арксинуса, потом от корня квадратного, потом от линейной и находим произведение этих производных.</em>
<em>y'=(arcsin√(2x+1))'=(1/(√(1-(√(2x+1)²)*(1/(2√(2x+1)))*(2x+1)'=</em>
<em>(2/(√(1-2x-1))*(1/(2√(2x+1)))=1/((√-2x)*(√(2x+1)))=1/(√(-4x²-2x))</em>
<em>Использовал табличные производные (√u)'=u'/(2√u)</em>
<em>(arcsinu)'=u'/√(1-u²); (kx+b)'=k</em>