AC^2=AD^2+CD^2=256+144=400
AC=+20,-20, AC>0 >> AC=20
Если внимательно посмотреть, то можно заметить, что CD - высота.Треугольники равны по углу острому и катету(общий), следовательно это равнобедренный треугольник, значит, BD=16(CD - высота, биссектриса и медиана из вершины равн. трг.)
CB=20 тоже, AB=32
Прикрепляю.................................
Смежный угол равен 120 градусов, угол СВN = 0,5*120=60 градусов. сумма углов А и АВN = 180 - по признаку (сумма одност. углов) параллельность BN и AB
№1. Диагонали прямоугольника ABCD пересекаются в точке O. Найти угол ABO, если угол между диагоналями равен 70°.
Длины диагоналей прямоугольника равны.
Диагонали прямоугольника делятся точкой пересечения пополам
поэтому углы между диагоналями и боковой стороной равны между собой и равны (180°-70°):2 = 55°. То есть угол АВО = 55°
№2. На стороне BC параллелограмма ABCDвзята точка Р так,
что AB=BP.
Докажите, что AP – биссектриса угла BAD.
Треугольник АВР равнобедренный, поэтому угол ВАР = углу ВРА. А угол ВРА = углу РАD ( внутренние накрест лежащие при параллельных ВС и AD и секущей АР). То есть угол ВАР = углу РАD, а значит АР - биссектриса угла BAD
Периметр параллелограмма равен (АВ =CD): 10+10+8+10+18 = 56
Найти периметр параллелограмма, если CD=10 см, CP=6 см.
АО - радиус, АС - касательная, значит ∠ОАС=90°.
Треугольник АОВ равнобедренный т.к. АО=ВО=R, значит ∠ВАО=∠АВО=(180-108)/2=36°.
∠ВАС=∠ОАС-∠ВАО=90-36=54° - это ответ.