2Cos²x - 3Sinx = 0
Cos²x + Sin² = 1 => Cos²x = 1 - Sin²x
2(1 - Sin²x) - 3Sinx = 0
2 - 2Sin²x - 3Sinx = 0
-2Sin²x - 3Sinx + 2 = 0
2Sin²x + 3Sinx - 2 = 0
Sinx = t ∈ [-1;1]
2t² + 3t - 2 = 0
D = 9 - 4 * 2 * (-2) = 25
t₁ = (-3 + √25) / 4 = 1/2
t₂ = (-3 - √25) / 4 = -2 ∉ [-1;1]
Sinx = 1/2
x = π/6 + 2πn, n∈Z
x = 5π/6 + 2πn, n∈Z
5√(x+3)/(5x-1)+√(5x-1)/(x+3)=6
ОДЗ х+3/5х-1>0
=======-3=======1/5======
++++++ ------------ ++++++
√(x+3)/(5x-1)=t
5t+1/t=6
5y²-6t+1=0
D=36-20=16
y12=(6+-4)/10 = 1 1/5
√(x+3)/(5x-1)=1
(x+3)/(5x-1)=t
x+3=5x-1
4x=4
x=1
√(x+3)/(5x-1)=1/5
(x+3)/(5x-1)=1/25
25x+75=5x-1
20x=-76
x=-76/20=-3.8
50-6=44
44/50=0,88
/ -это разделить)
Сos^2 t+sin^2 t /каждый делим на cos^2 t
1+tg^2 t
вроде все
142 600=1,426*10∧5 (десять в 5 степени)
.................................................