Боковая поверхность прямой призмы - это сумма площадей боковых граней (прямоугольников со сторонами, равными стороне основания и высоте призмы). У данного нам прямоугольного треугольника (основание призмы) гипотенуза по Пифагору равна √(4²+6²)=√52=2√13.
Тогда Sбок= 4*10+6*10+2√13*10 = 100+20√13 = 20(5+√13) см.
<span>Р - периметр, h - высота, а -сторона, которые в ромбе все равны
Р = 8*h, Р=а+а+а+а=4а, 4а=8h а=2h, в прямоугольном треугольнике,высота=катету, который в 2 раза меньше стороны (гипотенузы), значит острый угол=30, тупой угол ромба=180-30=150 ответ 150
</span><span />
Дано: АВСД - квадрат, А1В1С1Д1АВСД параллелепипед. d - диоганаль параллелепипеда, d = два корень из шести, a,b,c - измерения параллелепипеда, a:b:c = 1:1:2.
Биссектриса параллелограмма отсекает от него равнобедренный треугольник. Это свойство основано на равенстве накрестлежащих углов при пересечении параллельных прямых (стороны параллелограмма) секущей ( биссектриса)
Пусть биссектриса угла А будет АМ, угла В - ВК.
Угол ВАМ=углу АМD как накрестлежащие, Но ВАМ=МАD как равные половины угла А. Поэтому в ∆ АDM углы при АМ равны, и он - равнобедренный. DM=AD=5см
На том же основании ВК отсекает равнобедренный ∆ ВСК. где СК=ВС=5 см
СD=AB=12 см
Тогда на стороне CD отрезки
DМ=5 см, СК=5 см, МК=12-(5+5)=2 см