Держи, сам(а) подставь дальше))тут 5 и 7 номер
степень уравнения это степень многочлена задающей его левую часть, если правая равна 0, т.е. наибольшая степень одночлена входящего в слагаемых многочлена
первое слагаемое xy, степень 2 (степень переменной х 1, y 1, 1+1=2)
второе слагаемое -y, степень 1
третье слагаемое -1, степень 0
значит степень данного уравнения 2
1. <span>((a+b)-(a-b))*((a+b)+(a-b))*(1/a+1/b) = (a+b-a+b)*(a+b+a-b)*(1/a+1/b) = 2a*2b*(a+b)/ab = 4a+4b = 4(a+b)</span>
2. (1,8<span>·3</span>)(10-3<span>·105</span>)=5,4
3. -164
4. 3,3
5. 6
6. А
7. Б
Длина спуска и подъёма одинакова и равна S км. Тогда длина всей дороги со спуском и подъёмом равна 2S км .
Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна
1,5·2S=3S км .
Скорость девочки по ровной дороге равна V₁=х км/час.
Тогда время, затраченное на прохождение ровной дороги равно
t₁=3S/x =3·(S/x)(час).
Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час).
Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) .
Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) .
Время, за которое девочка совершит подъём, равно
t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час)
Время спуска и подъёма равно
t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час)
Сравним это с t₁=3(S/x) .
Время, затраченное на прохождение ровной дороги,
больше в t₁/(t₂+t₃)=3/2=1,5 раза.
Время ,затраченное на прохождение дороги со спуском и подъёмом,
меньше в (t₂+t₃)/t₁=2/3 раза.