MK//AC ТАК КАК УГЛЫ РАВНЫЕ.сУМА уГЛА К И УГЛА С 180 ГРАДУСОВ
<span>Пусть h – высота трапеции ABCD с основаниями AD и BC и диагоналями AC=6 и BD=8 , l – средняя линия трапеции. Через вершину C проведём прямую параллельно диагонали BD до пересечения с продолжением основания AD в точке M . Тогда четырёхугольник BCMD – параллелограмм, поэтому
</span><span>CM=BD=8, DM=BC, AM=AD+DM = AD+BC = 2l = 10.</span>
<span>Значит, треугольник </span>ACM – прямоугольный ( AM2=AC2+CM2 <span>). Его площадь равна половине произведения катетов, т.е. </span>
<span>SΔ ACM =1/2(дробь)AC· CM = 1/2(дробь)· 6· 8 = 24.</span>
внешний угол вопустим ВК (из вершины)
решаем по теореме пифагора BD^2=13^2-12^2=169-144=25