Sin20cos20=1/2*sin40
cos50=cos(90-40)=sin40
(sin20cos20)/cos50=(0,5sin40)/sin40=0,5
Так как (х+у)²=х²+у²+2ху, то
х²+у²=(х+у)²-2ху,
подставим во второе уравнение
{х+у=ху
{(х+у)²-2ху=4ху
{х+у=ху
{(х+у)²=6ху
сделаем замену:
х+у=а
ху=b
{a=b
{a²=6b
a²-6a=0
a(a-6)=0
a¹=0 => b¹=0
a²=6 =>b²=6
{х+у=0
{ху=0
x¹=0
y¹=0
{х+у=6
{ху=6
y=6-x
x(6-x)=6
x²-6x+6=0
x²'³=3±√(9-6)=3±√3
x²=3+√3 => y²=6-x=3-√3
x³=3-✓3=> y³=6-x=3+√3
ответ:
x¹=0
y¹=0
x²=3+√3
y²=3-√3
x³=3-✓3
y³=3+√3