Расстояние до AD половина стороны AB
AB=10см
Так как MN║АВ, <u>четырехугольник АВNM - трапеция.</u>
<em>В трапецию можно вписать окружность только тогда, когда суммы противоположных сторон равны.</em>
АВ+MN=AM+BN
<u>Периметр СМN</u>= периметр АВС- АВ+3+AM+BN =Р АВС- АВ+3+(АВ+3)=12+6=18
ᐃ АВС ~ ᐃ MСN по свойству углов при пересечении параллельных прямых секущей и общему углу С.
Отношение периметров подобных треугольников равно отношению его сторон.
Р ᐃ MСN: Р ᐃ АВС=18:12=1,5
MN:АВ=1,5
3:АВ=1,5
АВ=3:1,5=2 см ( вообще-то не пригодится)
----
<em> Расстояние от вершины треугольника до точки касания вневписанной окружности с продолжением его боковой стороны равно его полупериметру :</em>
<em />
СР=12:2=6см
Поскольку ᐃ АВС ~ ᐃ MСN, все их соответственные части имеют равный коэффициент подобия.
СР:СQ=1,5
6:СQ=1,5
СQ=6:1,5=4 см
РQ=СР- СQ=6 -4=2 см
1)M(-5;7), N(3;-1), P(3;5), K(-5;-3) Найти: а) координаты векторов MN,PK б) длину вектора NPв) координаты точки A – середины MN координаты точки B – середины PK г) AB; MKд) уравнение окружности с диаметром NPе) уравнение прямой NK2)A(4;2), B(0;-6), C(-4;-2).Доказать, что треугольник ABC – равнобедренный.3)Окружность задана уравнением(x-2)2+(y-3)2=26.Принадлежит ли этой окружности точкаD (1;-2)?
Дано:
AE||OS
CR - секущая
угол СВЕ - угол АВС = 40°
Найти: угол BRS
Решение:
1. Пусть угол АВС - х, тогда угол СВЕ - х + 40°(из условия)
угол АВС + угол СВЕ = 180° (смежные углы)
х + (х + 40°) = 180°
2х = 180 - 40
2х = 140
х = 70
Значит, угол АВС равен 70°
2. угол СВЕ = угол АВС + 40° (из условия задачи)
угол СВЕ = 70 + 40 = 110°
3. угол СВЕ = угол BRS = 110°(соответственные углы)
Ответ: угол BRS = 110°