Использовано свойство углов выпуклого четырехугольника
K=40,o=90,M=50 (надеюсь помог -..ikpabi-_)
Ответ:
Да, коллинеарны.
Объяснение:
По условию векторы a и b - коллинеарные векторы.
Пусть,
a={x1;y1;z1}
b={x2;y2;z2}
a+b={x1+x2;y1+y2;z1+z2}
Тогда по условию коллинеарности
x1/x2=y1/y2=z1/z2=k
тогда координаты вектора b можно переписать в виде:
b={k*x1;k*y1;k*z1}
Вектор a+b примет вид:
a+b={x1+k*x1;y1+k*y1;z1+k*z1}
Проверим выполняется ли условие коллинеарности:
x1/(x1+k*x1)=y1/(y1+k*x1)=z1/(z1+k*z1)
x1/(x1*(k+1))=y1/(y1*(k+1))=z1/(z1*(k+1))
1/(k+1)=1/(k+1)=1/(k+1)
Соотношения равны ⇒ условие коллинеарности соблюдено и вектора коллинеарны
CosB=BH/AB
AB=BC=> AB=45+30=75
CosB=45/75=0,6