Х-длина поезда
х/10 его скорость
пройти мимо моста- значит пройти длину моста+собственную длину
х/10 *25=300+х
25х/10=300+х
2,5х=300+х
1,5х=300
х=200м длина поезда
200/10=20 м/с - его скорость =или (20*3,6)=72 км/ч
Lg(x +1)/x > 0 (x +1)/x > 0
------------------ -1-------------------0------------ x∉(-1;0)
+ - +
(x +1)/x > 1 1+1/x-1 > 0 → 1/x> 0 x> 0
Cos(2*7x) + sin(7x) = 1
1 - 2sin^2(7x) + sin(7x) = 1
sin(7x)*(1 - 2sin(7x)) = 0
1) sin(7x) = 0
7x = πk
x = πk/7
2) sin(7x) = 1/2
7x = π/6 + 2πk, x = π/42 + 2πk/7
7x = 5π/6 + 2πk, x = 5π/42 + 2πk/7
Положим что утверждение 1 неверное,тогда
тк последняя цифра записи,цифра 1,то у числа A-8
последняя цифра 3,но квадрат натурального числа не может кончаться цифрой 3,тк всевозможные квадраты последних цифр:
1,4,9,16,25,36,49,64,81: есть они могут кончаться только на цифры 1 4 9 6 5
Тогда 1 утверждение верное.Положим что неверно 3 утверждение,тогда
последняя цифра числа A+7 цифра 8,но такое невозможно тк квадраты кончаются на цифры 1,4,6,9,5. Тогда утверждение 2 неверно,а утверждения 1 и 3 верные. Тогда пусть a^2=A+7 b^2=A-8 a,b-натуральные числа,тогда
a^2-b^2=15
(a-b)(a+b)=15 ,тогда множители натуральные и возможно 2 варианта
1) a-b=3 a+b=5 2a=8 a=4 A=4^2-7=9
2) a-b=1 a+b=15 2a=16 a=8 A=8^2-7=57
То есть возможно 2 варианта A=9 или A=57