Ответ:
106°
Объяснение:
Т.к. луч ОЕ делит угол АОВ на два угла, то угол АОВ= угол АОЕ+угол ЕОВ.
угол АОВ= 34+72=106°
Из прямоугольного ΔMM1N1 по теореме Пифагора:
Проведем перпендикуляр N1N2 к прямой пересечения двух плоскостей N1M1. Т.к. и NN1 ⊥ N1M1, то угол NN1N2 будет углом между этими двумя плоскостями, а т.к. они перпендикулярны, то ∠NN1N2 = 90°.
Получаем, что прямая NN1 перпендикулярна двум пересекающимся прямым (N1M1 и N1N2) плоскости, а, следовательно перпендикулярна самой плоскости MM1N1 и как следствие прямой MN1. принадлежащей этой плоскости.
Т.е. ∠MN1N = 90°.
Из прямоугольного ΔMNN1 по теореме Пифагора:
Решение во вложении..............................
Вписанные углы КМР и КЕР равны α, так как опираются на одну и дугу.
Угол KFP - внешний угол треугольника PFE и равен сумме двух внутренних, не смежных с ним (свойство). Или
<KFP = α + β.
P.S. Ответ соответствует теореме: углы между пересекающимися хордами равны полусумме градусных мер дуг, отсекаемых этими хордами.