Как то так (просто равенство треугольников )
<span />
Номеров заданий не видно, поэтому:
1) КО/ОА=tgА=tg45°=1. Отсюда КО=ОАtgA=3*1=3
КО/МК=sinM=sin60°=√3/2. Отсюда МК=КО/sinM=3/(√3/2)=2√3 (ответ 2)
2) По теореме Пифагора (из ΔМТР) МТ²+РТ²=МР². Отсюда МР=√(МТ²+РТ²)=√(4²+8²)=√(16+64)=√80=4√5
tgP=MT/TP=4/8=1/2 (из ΔМТР)
tgP=MК/МP (из ΔКМР). Отсюда МК=МРtgР=4√5*(1/2)=2√5
По теореме Пифагора (из ΔМТК) МТ²+ТК²=МК². Отсюда КТ=√(МК²-МТ²)=√((2√5)²-4²)=√(20-16)=√4=2
3) По теореме синусов (для ΔАВQ) АВ²=AQ²+BQ²-2AQ*BQcosQ. Отсюда cosQ=(AQ²+BQ²-АВ²)/(2AQ*BQ)=(6²+5²-5²)/(2*6*5)=36/60=0,6
По теореме синусов (для ΔPRQ) PR²=PQ²+RQ²-2PQ*RQcosQ. Отсюда PR=√(PQ²+RQ²-2PQ*RQcosQ)=√((4+6)²+(7+5)²-2(4+6)(7+5)*0,6)=√(100+144-144)=√100=10
Периметр четырёхугольника АВRP равен:
АВ+BR+RP+PA=5+7+10+4=26
это получается подобие треугольников
получается 12см.
Х²-16х=0
х(х-16)=0
х=0
х-16=0
х=16
ответ 0;16
В призме АВСА1В1С1 АА1 - боковое ребро, точки К и К1 - середины противолежащих сторон оснований.
АК и А1К1 - высоты правильных тр-ков.
h=АК=А1К1= АВ√3/2=2√3/2=√3 см.
Площадь прямоугольника АА1К1К:
S=АК·АА1=2√3 см² - это ответ.