Пусть ABCD - равнобедренная трапеция, значит AB=CD=10 и <BAD=<CDA
BC=15
AD=27
Из вершин B и С опустим перпендикуляры BK и CF на сторону AD
тогда KBCF - прямоугольник, у которого BC=KF и BK=CF
значит KF=15
AD=AK+KF+FD
27=AK+15+FD
AKB = CDF( по гипотенузе и острому углу)
т.е. AK=FD=6
AKB - прямоугольный
по теореме Пифагора найдем BK
Получаем систему уравнений
y = 2, значит x = 2+4 = 6
Ответ: y = 2, x = 6
(5y - 2)(y + 3) = (3y + 2)(2y + 1)
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3