<em>Сравнить проекции - это значит, указать, какая из них больше, меньше, или равна другой. У большей наклонной большая проекция. У меньшей -меньшая. Поэтому проекция наклонной АВ на плоскость больше проекции наклонной АС.</em>
Потому что у равнобедренного треугольника 2стороны и равны а 3 сторона называется основанием. У равнобедренного треугольника углы при основании равны а 3 угол называется угол при вершине треугольника
Наименьшая высота треугольника равен стороне 13 см
ABCD-правильная трапеция, ВС-меньшее основание, тогда АВ=ВС=СD. Из точки В проведем высоту ВН. Диагональ АС делит высоту на отрезки ВО=15см, ОН=12см.Обозначим АВ=х и выразим АН=√(x^2-729). Треуг. АВС-равнобедренный, так как АВ=ВС, значит угол ВАС=ВСА. Теперь рассмотрим треуг. АНО и СВН. Они прямоугольные. Угол ВСО=НАО как накрест лежащие при параллельных AD и ВС и секущей АС, следовательно треуг. АНО и СВН подобные. Стороны треуг. АНО относятся к соответствующим сторонам треуг. СВН как 15/12 или 5/4.ВС/АН=х/√(x^2-729)=5/45*√(x^2-729)=4x (чтобы избавиться от корня, возведем обе части в квадрат)25*9(x^2-729)=16x^225x^2-16x^2-18255=09x^2=18255x^2=2055x=45AB=BC=CD=45смНайдем большее основание AD.АН=√(x^2-729)=√(2025-729)=36см<span>AD=45+36*2=117см</span>
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Пусть х - коэффициент пропорциональности.
Тогда BD = 6х, AB = BC = CD = DA = 5x.
ВО = OD = 3х.
ΔВОС: ∠ВОС = 90°, по теореме Пифагора
ВС² = ВО² + ОС²
25x² = 9x² + 400
16x² = 400
x² = 25
x = 5 (x = - 5 не подходит по смыслу задачи)
Сторона ромба: ВС = 5 · 5 = 25 см
BD = 6 ·5 = 30 см
Площадь ромба можно найти как половину произведения диагоналей или как произведение стороны на проведенную к ней высоту:
Sabcd = AC·BD/2 = BC·h, где h - высота ромба.
40 · 30 / 2 = 25 · h
h = 600/25 = 24 см