<span>а) sin α =√3/2α=(-1)ⁿ+πn, n∈Z
б) cos α = - √2/2α=+-3π/4+2πn, n∈Z
в) tg α = √ 3α=π/3+πn, n∈Z
г) ctg α = -1α=3π/4+πn, n∈Z
вычислите:а) tg²α + ctg²α=tg²α + ctg²α+2ctgα*tgα-2ctgα*tgα=(tgα+ctgα)²-2ctgα*tgα=(tgα+ctgα)²-2=3²-2=7
б)(3*sin α - 4*cos α)/(5*sin α + 6*cos α)
tgα=-3sinα/cosα=-3sinα=-3cosα(3*sin α - 4*cos α)/(5*sin α + 6*cos α)=(3(-3cosα)-4cosα)/(5(-3cosα)+6cosα) =-13cosα/(-9cosα)=13/9
</span>
arcsin √2/2 - arcos0 + (arctg √ 3)/ (arcctg√3/ 3)=π/4-π/2+π/3:π/3=1-π/4