Вершина S пирамиды проецируется в точку О, находящуюся на расстоянии 1/3 высоты h правильного треугольника в основании пирамиды от ближайшей стороны (это свойство точки пересечения медиан треугольника, а в равностороннем треугольнике высота является и биссектрисой и медианой). Это расстояние ОД = 8/3.
Так как двугранный угол при стороне основания равен 60 градусов, то апофема равна ОД/cos 60 = (8/3)/(1/2) = 16/3.Сторона основания равна h/cos 30 = 8/(√3/2) = 16/√3. половина стороны равна 8/√,3.
Тогда боковое ребро пирамиды равно √((16/3)²+(8/√3)²) =
=√((256/9)+(64/3)) = √(<span>
448 /
9) = </span>√<span><span><span>
49.77778 = </span><span>7.055337 см.</span></span></span>
Сделаем рисунок.
Проведем диагонали ВD и АС ромба.
Соединим середины сторон a,b,c,d попарно.
Получившийся четырехугольник - <em><u>прямоугольник</u></em>, т.к. его стороны, являясь средними линиями треугольников, на которые делит ромб каждая диагональ - параллельны диагоналям ромба - основаниям этих треугольников.
А <u><em>диагонали ромба пересекаются под прямым углом</em></u>,
и поэтому углы четырехугольника также прямые.
Сумма углов параллелограмма ( а ромб - параллелограмм), прилегающих к одной стороне, равна 180°
Так как тупой угол ромба равен 120°, острый равен 60°
Пусть меньшая диагональ d, большая -D
Диагональ d равна стороне ромба, так как образует с двумя сторонами ромба равносторонний треугольник ABD с равными углами 60° .
Большая диагональ D в два раза длиннее высоты АО равностороннего треугольника AB.
АО равна стороне ромба АВ, умноженной на синус угла 60°
АО=4√3:2=2√3
D=АС=4√3
Стороны прямоугольника ( на рисунке красного цвета) равны:
ширина ab равна половине BD и равна 2 см
длина bc равна половине АС и равна 2√3 см
S abcd=2*2√3=4√3
ΔABC прямоугольный: ∠BAC=90°
AF⊥BC; BF = 1; FC = 4
Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит его на два подобных, которые подобны ему самому.
ΔABF ~ ΔCAF ⇒ h² = BF*CF = 1*4 = 4 ⇒ h = √4 = 2
BC = BF + CF = 5
Площадь треугольника
Ответ: площадь треугольника равна 5
Дано:
Треугольник ACB
Угол С= 90
Угол B= 60
AB=10
Найти BC
Решение
1. Угол A = 90- B = 30 (уголA+уголB=90)
2. Из 1 следует ВС=1/2АВ
2BC=AB
BC= 10:2
BC=5cм
Пиши это пока, ща другую еще решу