Если это квадратное уравнение , то оно решается через дискриминант , значит если дискриминант равен нулю , то уравнение должно иметь один корень
Одиннадцать целых, одна вторая.
По индукции.
<u>База</u>. n = 1: 4^2 + 3^2 = 25 делится на 5.
<u>Переход</u>. Пусть делится при n = k. Рассмотрим n = k + 1:
4^(k + 2) + 3^(2k + 2) = 4 * 4^(k + 1) + 9 * 3^(2k) = 4(4^(k + 1) + 3^(2k)) + 5 * 3^(2k)
Первое слагаемое делится на 5 по предположению индукции, второе - тоже очевидно делится на 5, значит, вся сумма делится на 5. Индукционный переход доказан.
Тогда по принципу математической индукции это верно для всех натуральных n.